isolated by chromatography and the auxiliary removed in high yield (80–95%) via treatment with $LiOH/H_2O_2$ to afford the acid or LAH to afford the alcohol with excellent recovery of auxiliary (>90%),^{3,15}

Remarkably, in view of the modeling results and prior experience, reaction of the crotonate dienophile 4 with isoprene afforded the major cycloadduct 17 (96:4) possessing the unexpected absolute configuration which apparently arises via the s-trans rotamer of 4 as does 14 from $3.^{16,17}$ Other dienes gave π -facial selectivity (90-92% de) comparable to that seen for the Evans and Oppolzer auxiliaries with the same dienes.¹⁻³ However, reaction of dienophiles 5 and less surprisingly 6 with isoprene afforded mixtures of adducts 18-19 and 20-21. Predictably poor π -facial selectivity is observed ($\sim 1:1$), presumably owing to loss of control over the rotamer population about the C_1 - C_2 bond.

Somewhat surprisingly, there have been relatively few reported examples of Lewis acid catalyzed cycloadditions of chiral dienophiles with oxygen-substituted dienes, probably as the result of instability of these dienes to the required Lewis acids.¹⁻⁴ We have employed triisopropylsilyl (TIPS) protected oxygenated dienes, which has permitted successful cycloadditions with 3-5 in the presence of Et₂AlCl in high yield (89–95%).^{13,18} However, as shown in Table I, several TIPS-protected dienes were examined which uniformly exhibited substantially lower π -facial selectivities (1-2:1) than the comparably substituted alkyl dienes. This surprising lack of selectivity may result as a consequence of a very early reactant-like transition state for the cycloaddition reactions involving oxygen-substituted dienes. Thus, the distance-dependent nonbonded interactions normally responsible for the energetic differences which result in π -facial selectivity are much smaller. Significantly, reaction of ent-3 with the somewhat less reactive and sterically more encumbered diene 22 (2.0 equiv) in the presence of TiCl₄ afforded a mixture of the two endo cycloadducts 23 and 24 (88:12) exclusively. The stereochemistry and absolute configuration of 23 was confirmed by X-ray analysis of the derived ketone.19

It is interesting to note that the level of diastereoselection in all of these cycloadditions appears to correlate with the diene structure and that the highest π -facial selectivities are observed with dienes bearing substitution at both internal carbons. The generality and possible mechanistic significance of this observation as well as the structure of the reactive dienophile-Lewis acid complexes in solution with respect to the C_1-C_2 rotamer(s) and the development of a more accurate model for the transition-state

(19) Details of the single-crystal X-ray analyses of 7 and 23 will appear in a forthcoming full account of these studies.

structure are under investigation. Further studies of cycloaddition reactions of these new chiral dienophiles are also in progress as are studies of the applicability of these auxiliaries to a variety of other reactions amenable to use for asymmetric synthesis.

Acknowledgment. We are extremely grateful to the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health for a research grant (GM-29290) in support of these studies. We also wish to acknowledge fellowship support awarded to S.G.N. provided by the Merck Co.

Supplementary Material Available: Experimental details for preparation of 1 and 2 and a general procedure for the asymmetric Lewis acid catalyzed Diels-Alder cycloaddition (7 pages). Ordering information is given on any current masthead page.

Asymmetric Synthesis of the Macrolide (+)-A83543A (Lepicidin) Aglycon

David A. Evans* and W. Cameron Black

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138

Received December 4, 1991

This communication reports the first synthesis of the structurally unique macrolide A83543A,¹ for which we suggest the name lepicidin. This new natural product has been shown to have potent insecticidal activity, particularly against Lepidoptera larvae.² At the time that this project was initiated, the absolute configuration of lepicidin was unknown; consequently, the absolute configuration shown here was presumed on the basis of biogenetic considerations.³ The synthetic plan for (+)-1 (Scheme I) was designed around the illustrated intramolecular Diels-Alder⁴ reaction of 2,

which was assembled from a lactonic fragment 3 (Scheme II) and dienic imide 4 (Scheme III) via palladium-catalyzed cross coupling

⁽¹⁴⁾ Berson, J. A.; Hamlet, Z.; Mueller, W. A. J. Am. Chem. Soc. 1962, 84, 297. (15) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987,

^{28, 6141.}

⁽¹⁶⁾ The absolute configuration of these adducts was established by cor-relation with known substances: Sonnet, P. E.; McGovern, T. P.; Cunningham, R. T. J. Org. Chem. 1984, 49, 4639 and refs 1-3.

⁽¹⁷⁾ This result could also arise by reaction of 4 via other endo and exo transition states both chelated and nonchelated. Since exo/endo selectivity is dependent on the stoichiometry of the Lewis acid, a chelated Lewis acid dienophile complex seems implicated.²

⁽¹⁸⁾ Independently, Overman and co-workers have made similar observations: Early, W. G.; Jacobsen, J.; Meier, G. P.; Oh, T.; Overman, L. E. Tetrahedron Lett. **1988**, 29, 3781. Devine, P. N.; Oh, T. J. Org. Chem. **1991**,

⁽¹⁾ Kirst, H. A.; Michel, K. H.; Martin, J. W.; Creemer, L. C.; Chio, E.; Yao, R. C.; Nakatsukasa, W. M.; Boeck, L. D.; Occolowitz, J. L.; Paschal, H.: J. W.; Deeter, J. B.; Jones, N. D.; Thompson, G. D. Tetrahedron Lett. 1991, 32, 4839-4842.

⁽²⁾ Bocck, L. D.; Chio, H.; Eaton, T. E.; Godfrey, O. W.; Michel, K. H.; Nakatsukasa, W. M.; Yao, R. C. Eli Lilly and Co. Eur. Pat. Appl. 375316, 1990; Chem. Abstr. 1991, 114, 80066.

⁽³⁾ The polycyclic ring system in ikarugamycin bears a close structural relationship to lepicidin: Jomon, K.; Kuroda, Y.; Ajisaka, M.; Sakai, H. J. Antibiot. 1972, 25, 271. Total syntheses of ikarugamycin: (a) Boeckman, R. K.; Weidner, C. H.; Perni, R. B.; Napier, J. J. J. Am. Chem. Soc. 1989, 111, 8036-8037. (b) Paquette, L. A.; Macdonald, D.; Anderson, L. G. J. Am. Chem. Soc. 1990, 112, 9292-9299.

⁽⁴⁾ Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238-1256.

Scheme II^a

^a (a) TiCl₂(OiPr)₂, CH₂Cl₂, -78 °C. (b) Me₄NBH(OAc)₃, AcOH, CH₃CN, -40 °C. (c) PPTS, C₆H₆, 80 °C. (d) MsCl, Et₃N, CH₂Cl₂, room temperature. (e) BF₃·OEt₂, THF, -78 °C. (f) LiOH, THF, room temperature; CH₂N₂, EtOAc, room temperature. (g) TESOTf, 2,6-lutidine, CH₂Cl₂, -78 °C. (h) (Sia)₂BH, THF, 0 °C; H₂O₂, NaHCO₃, THF, 0 °C. (i) Py-SO₃, DMSO, (iPr)₂NEt, CH₂Cl₂, room temperature. (j) Et₂Zn, (+)-*N*.*N*-dibutylnorephedrine, hexane, 0 °C. (k) LiOH, *t*-BuOH, 35 °C. (l) 2,4,6-Trichlorobenzoyl chloride, (iPr)₂NEt, THF, room temperature; DMAP, PhCH₃, 110 °C.

Scheme III^a

^a(a) BH₃·SMe₂, THF, 0 °C. (b) (ClCO)₂, DMSO, Et₃N, CH₂Cl₂, -70 °C. (c) CHI₃, CrCl₂, dioxane/THF, room temperature. (d) DIBALH, PhCH₃, -78 °C. (e) DMAP, CHCl₃, room temperature \rightarrow 60 °C.

Scheme IV^a

^a(a) $Pd_2(dba)_3$, $CdCl_2$, $(iPr)_2NEt$, *N*-methylpyrrolidinone, 40 °C. (b) Me_2AlCl , CH_2Cl_2 , 0 °C to room temperature. (c) LiSEt, THF, room temperature. (d) AcOH, THF/H₂O, room temperature. (e) TBSCl, ImH, CH_2Cl_2 , room temperature. (f) (ClCO)₂, DMSO, Et₃N, CH_2Cl_2 , room temperature. (g) Et₃SiH, $Pd/CaCO_3/PbO$, acetone, room temperature. (h) NaHMDS, THF, -78 °C. (i) NaHMDS, THF, 0 °C. (j) MsCl, Et₃N, CH_2Cl_2 , room temperature. (k) DBU, PhCH₃, 60 °C. (l) HF, CH₃CN/THF.

at the C_5-C_6 bond. The successful development of this approach to the synthesis of the lepicidin aglycon is presented in the following discussion.

The synthesis of the macrolide component 3 began with enantiomerically pure aldehyde $5,^5$ which was transformed to β -keto ester 6 (Scheme II) through a highly diastereoselective addition of siloxy diene $5a^6$ (diastereoselection > 20:1). Subsequent reduction,⁷ lactonization, and elimination then provided unsaturated δ -lactone 7 in excellent overall yield. The C₃ stereocenter was next installed by the stereoselective conjugate addition of vinyl-stannane 7a⁸ to lactone 7. Hydrolysis of lactone 8 followed by immediate esterification and silylation of the intermediate hydroxy

⁽⁶⁾ Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. 1979, 578-579.
(7) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc.

⁽⁵⁾ Prepared in 88% yield from 4-pentenal by auxiliary-mediated aldol reaction followed by transamination, protection, and reduction. For an example of this methodology, see: Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. **1990**, 112, 7001-7031.

^{1988, 110, 3560-3578.} (8) Behling, J. R.; Ng, J. S.; Babiak, K. A.; Campbell, A. L.; Elsworth,

⁽a) Benning, J. K.; Ng, J. S.; Baolak, K. A., Campbell, A. L., Elsworth, E.; Lipshutz, B. H. *Tetrahedron Lett.* **1989**, *30*, 27–30.

acid afforded methyl ester 9. At this juncture, the terminal olefin in 9 was transformed to aldehyde 10 by regioselective hydroboration and subsequent oxidation.

The isolated C_{21} stereocenter was next established through the (+)-dibutylnorephedrine-catalyzed⁹ addition of diethylzinc to aldehyde **10** to provide carbinol **11** as an inseparable 10:1 mixture of diastereomers. Macrolactonization using the method of Yamaguchi¹⁰ afforded macrocycle **3** in 77% yield accompanied by 8% of the readily separable C_{21} epimer. This 16-step reaction sequence provided **3** in 41% overall yield.

The synthesis of diene component 4 began with β -silyloxy acid 13,¹¹ which was readily converted to aldehyde 14 (Scheme III). Selective formation of the (*E*)-vinyl iodide was accomplished using Takai's chromium reagent¹² in 6:1 dioxane/THF to provide a 9:1 mixture of olefin isomers, which were separated after the next step. Reduction of ester 15 to aldehyde 16 was followed by the introduction of the oxazolidinone moiety through phosphonium salt 17 to provide the desired *E* unsaturated imide (23:1 ratio). This six-step reaction sequence afforded diene 4 in 42% overall yield.

Fragments 3 and 4 were coupled using a palladium-catalyzed Stille reaction¹³ to provide the triene 2 in 65% yield, along with 17% recovered 3. The subsequent Lewis acid-mediated intramolecular Diels-Alder reaction proceeded with high selectivity to give the desired cycloadduct 18 in 71% yield (Scheme IV).

Removal of the extremely hindered oxazolidinone auxiliary was achieved using Damon's recently reported lithio mercaptide method.¹⁴ Following deprotection and oxidation of 19, the resulting thioester 20 was efficiently reduced to keto aldehyde 21 by Fukuyama's hydrosilylation procedure¹⁵ using Lindlar's catalyst.

The final ring was then assembled through an intramolecular aldol reaction of 21 to provide a 12:1 mixture of aldol diastereomers 22 and 23. Unfortunately, the major adduct 22 was inert to dehydration. However, the two diastereomers could be equilibrated via the sodium alkoxide to give a 1:2.5 mixture favoring 23. Formation and elimination of the mesylate of this adduct provided the differentially protected aglycon. The silyl protecting groups at C₉ and C₁₇ could be removed cleanly with HF/acetonitrile to provide the (+)-lepicidin aglycon 24. The analytical properties of the synthetic material agreed in all respects with those of the natural aglycon¹⁶ with the exception of the optical rotation, which was equal and opposite in sign. This synthesis thus confirms the absolute stereochemical assignment of the natural product previously determined by a combination of X-ray diffraction and degradation.¹

Acknowledgment. Support has been provided by the National Science Foundation and the National Institutes of Health. An Eli Lilly predoctoral fellowship to W.C.B. is gratefully acknowledged. The NIH BRS Shared Instrumentation Grant Program 1 S10 RR01748-01A1 is acknowledged for providing NMR facilities.

Supplementary Material Available: Experimental procedures for all reactions as well as spectral and analytical data for all synthetic intermediates (13 pages). Ordering information is given on any current masthead page.

- (11) Theisen, P. D.; Heathcock, C. H. J. Org. Chem. 1988, 53, 2374-2378.
 (12) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408-7410.
- (13) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813-817.
 (14) Damon, R. E.; Coppola, G. M. Tetrahedron Lett. 1990, 31, 2849-2852.
- (15) Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050-7051.

Four-Dimensional Heteronuclear Triple Resonance NMR Methods for the Assignment of Backbone Nuclei in Proteins

Wayne Boucher and Ernest D. Laue*

Cambridge Centre for Molecular Recognition Department of Biochemistry University of Cambridge, Tennis Court Road Cambridge, CB2 1QW U.K.

Sharon Campbell-Burk and Peter J. Domaille

Du Pont Merck Pharmaceutical Company Box 80328, Wilmington, Delaware 19880-0328

Received October 15, 1991

Recently, Bax's group demonstrated that three-dimensional (3D) heteronuclear triple resonance NMR spectroscopy of proteins, uniformly enriched with ¹³C and ¹⁵N isotopes, allows sequential resonance assignments in larger proteins (>10 kDa). They proposed an elegant approach which involved recording a set of five or more 3D NMR spectra that correlate chemical shifts of backbone nuclei.¹⁻³ In order to resolve problems of overlap

Figure 1. Schematic representation of the magnetization transfer pathways along the polypeptide chain for the HCANNH (a) and the HCA-(CO)NNH (b) 4D NMR experiments. In the pulse sequence for the HCA(CO)NNH experiment (c), 90° pulses are depicted as narrow lines while open boxes represent 180° pulses. Cross-hatched boxes represent spin-lock pulses, SL₁ and SL₂, of 1 and 9 ms, respectively.^{5,8} Typical values for the delays are as follows: $\tau_1 = 1.5$ ms, $\tau_2 = 1.7$ ms, $\tau_3 = 4.5$ ms, $\tau_4 = 9.5$ ms, $\tau_5 = 2.75$ ms, $\tau_6 = 11.0$ ms, and $\tau_7 = 2.25$ ms. The following phase cycling was employed: $\varphi_1 = 4(y).4(-y); \varphi_2 = x, -x; \varphi_3 = 2(x).2(y).2(-x).2(-y); \varphi_4 = 2(x).2(-x); \psi_1 = x; \psi_2 = 8(x).8(-x); \psi_3 = x, -x; \psi_4 = (x, -x, -x, x).2(-x, x, -x), (x, -x, -x, x).$ Unless indicated otherwise, the phase of the remaining pulses is kept at x. Quadrature detection during t_1 , t_2 , and t_3 was achieved by independently incrementing the phases of ψ_1 , ψ_2 , and ψ_3 in a States-TPPI manner.⁹

(3) Bax, A.; Ikura, M. J. Biomol. NMR 1991, 1, 99-104.

0002-7863/92/1514-2262\$03.00/0 © 1992 American Chemical Society

⁽⁹⁾ Soai, K.; Yokoyama, S.; Ebihara, K.; Hayasaka, T. J. Chem. Soc., Chem. Commun. 1987, 1690-1691.

⁽¹⁰⁾ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.

⁽¹⁶⁾ We gratefully acknowledge Dr. Herbert Kirst (Eli Lilly and Company) for providing us with an authentic sample of A83543A aglycon for comparison purposes.

Ikura, M.; Kay, L. E.; Bax, A. Biochemistry 1990, 29, 4659-4667.
 Kay, L. E.; Ikura, M.; Tschudin, R.; Bax, A. J. Magn. Reson. 1990, 89, 496-514.